Publications /
Policy Paper

Back
The Geopolitics of Seawater Desalination
Authors
Marc-Antoine Eyl-Mazzega
Élise Cassignol
January 27, 2023

A rapidly-expanding market

Water desalination is gradually emerging as the leading solution to cope with increasing water stress: i.e., the imbalance between water demand and quantities available. The United Nations estimates that by 2025, two-thirds of the world’s population will be affected by such challenges. The causes of water scarcity are multiple, including climate change, intensive agriculture, and population growth. This requires states to rethink their water policies, which are central to preserving their stability, resilience and sovereignty.

A real “boom” in desalination industries is at work. The majority of Gulf countries now largely depend on desalinated water for their inhabitants’ consumption: in the United Arab Emirates (UAE), 42% of drinking water comes from desalination plants producing more than 7 million cubic meters (m3) per day, in Kuwait it is 90%, in Oman 86%, and in Saudi Arabia 70%. In 2022, there were more than 21,000 seawater desalination plants in operation worldwide, almost twice as many as a decade ago, and the sector’s capacity is growing at between +6% and +12% per year.

By 2030, desalination capacity in Middle Eastern countries is expected to almost double, as part of plans announced in the region to prepare these economies for their transition to “post-oil” and to foster resilience. Saudi Arabia’s desalination capacity is set to increase from 5.6 million cubic meter (m3) per day in 2022 to 8.5 million m3 per day in 2025, and it will have to cover more than 90% of the country’s water consumption. The same holds for the UAE, Kuwait, Bahrain and Israel, where the production of desalinated water will more than double by 2030.

With the rise of available solutions to meet all such needs, these technologies are now in demand on virtually every continent, while the Middle East today represents only 50% of installed capacity worldwide. In Africa, large-scale projects have recently been announced in Algeria and Morocco, countries that until now have had sufficient resources. Other countries such as Ghana, Senegal and Kenya supply many cities with desalinated seawater. This is also the case for Cairo. In the Indo-pacific region, particularly in China and India, the needs for desalinated water are increasing, driven by growing industries and decreasing available water. In 2020 alone, the construction of more than 35 desalination plants was announced in China, as well as six in the Philippines, and six in Taiwan. In the Americas, the west coast of the United States stands out with important projects in California, and Texas is not far behind. In Latin America, new projects are emerging in Peru and Chile, driven mainly by the European firms still lead, but Asian or local players are taking off

There are many industrial players of varied size, although some have emerged for more than ten years as undisputed market leaders: in France, they include Engie and Veolia, whose merger with Suez opened up new prospects in the Americas, the Middle East and Europe; but there is also IDE Technologies, the Israeli champion of desalination; Korea’s Doosan Heavy, China’s Abengoa, and Spain’s Acciona.

More recently, companies in emerging countries have distinguished themselves by obtaining large-scale contracts. This is particularly the case of Gulf players like the Emirati company Metito and the Saudi firm Advanced Water Technologies. Egypt also has industrial actors. Overall, the technology of reverse osmosis is largely mastered, while production differentiation concerns capacity, operational costs, electricity consumption and plant life.

A huge environmental challenge

Desalinating seawater is an expensive, energy-intensive process that releases significant amounts of greenhouse gases (GHGs) in most countries that have a very intensive CO2 electricity mix. Desalination plants generally use lots of electricity, with variations depending on the technologies employed. Thermal desalination processes, used less and less, consume more than 5 kilowatt-hours (kWh) of energy per cubic meter of desalinated water produced. By contrast, the reverse osmosis desalination process, now the most widespread, can desalinate 1 m3 of water with an average of between 2.5 and 3 kWh, the record being set by a Saudi plant at 2.27 kWh. Desalination plants in the Middle East have largely benefited from an energy mix based on fossil fuels that permit cheap desalination. Electricity consumption for water desalination increased threefold in Saudi Arabia during the period 2005-2020, reaching about 6% of the kingdom’s total electricity consumption, or about 17 terawatt hours (TWh) in 2020. It is equivalent to the annual production of a large nuclear power plant. Doubling desalination capacity will therefore boost electricity demand and associated GHG emissions if the electricity mix remains largely dominated by hydrocarbons. The demand for gas and oil to produce this electricity would also increase. Several Gulf countries are beginning to mobilize renewable energy sources, such as the Al Khafji reverse osmosis plant in Saudi Arabia, which desalinates 60,000 m3 every day, and which is powered by photovoltaic panels. Finally, there are also power stations that operate using wave and geothermal energy.

Another issue with desalination concerns the management of brines: i.e., the remaining water, heavily loaded with the salt particles that have been separated from seawater, is often released into the sea, causing increased salinity levels in coastal waters.

How to improve performance along the entire water chain is the last key issue, not just at the production level. Losses in transmission and distribution networks from factories to final consumers are extremely high, reaching levels of more than 50% in most Gulf countries.

The use of desalination seems inevitable and destined to experience a very strong expansion. It is therefore urgent for these production processes to remove their dependency on fossil fuels because the doubling of installed capacity in the Middle East by 2030 is set to lead to a significant increase in emissions, unless electricity mixes become greener, as in the UAE which has deployed nuclear power in particular.

Two solutions are thus required: on one hand, the setting up of desalination plants powered by low-carbon energy sources (fields of solar panels, concentrated solar power, wind turbines, wave energy, or even nuclear power), possibly with combined cycle power plants for back-up capacity. The aim is therefore to decarbonize electricity mixes to ensure plants provide low-carbon water supplies. On the other hand, the construction of infrastructures of this kind must not replace a policy of energy efficiency, the optimization of desalination plant fleets, the search to cut losses and waste, reducing consumption subsidies as well as the collection and treatment of wastewater. Improving water sector governance and encouraging sustainable water use policies in industry, agriculture and the residential sector, are essential.

Ahead of the 22-24 March 2023 United Nations Water Conference in New York, with the successful COP15 on biodiversity and with the UAE presidency of COP28, water governance, and the development of a sustainable industry across the globe, is becoming central to achieve several Sustainable Development Goals and avoid fueling additional environmental degradations, as this industry is set to boom in the coming decade.

RELATED CONTENT

  • Authors
    Chami Abdelilah
    Derj Atar
    Hammi Ibtissem
    Morazzo Mariano
    Naciri Yassine
    with the technical support of AFRY
    July 19, 2021
    Morocco's significant renewable energy resources offer an unprecedented opportunity to anchor the country’s economic and political choices in the energy transition, and to turn the transition into an essential lever for economic development. This is all the more relevant as the costs of renewable energies have dropped over the past 10 years2, and now offer strong potential, not only for creating green jobs but for ensuring a dynamic and resilient economic growth as well. In 2020, ne ...
  • Authors
    Chami Abdelilah
    Derj Atar
    Hammi Ibtissem
    Morazzo Mariano
    Naciri Yassine
    with the technical support of AFRY
    July 9, 2021
    Les importantes ressources en énergies renouvelables du Maroc offrent une opportunité sans précédent d’ancrer les choix économiques et politiques du pays dans la transition énergétique, et de faire de cette transition un levier essentiel du développement économique. Ceci est d’autant plus important que le coût des énergies renouvelables a baissé au cours des 10 dernières années2 et présente désormais un fort potentiel, non seulement de création d’emplois verts mais aussi de croissan ...
  • Authors
    Chami Abdelilah
    Derj Atar
    Hammi Ibtissem
    Morazzo Mariano
    Naciri Yassine
    with the technical support of AFRY
    July 9, 2021
    The consequences of climate change are becoming progressively more visible in Morocco. Changes in rainfall patterns and drought, increases in average temperatures and heatwaves, flooding, and rising sea levels are increasingly affecting several regions. Yet, Morocco has a relatively low greenhouse gas (GHG) emission rate, compared to other countries. In 20162, Morocco’s total GHG emissions reached 86127.7 gigagram of carbon dioxide equivalent (Gg CO2-eq), totaling around 0.2% of glo ...
  • Authors
    Chami Abdelilah
    Derj Atar
    Hammi Ibtissem
    Morazzo Mariano
    Naciri Yassine
    with the technical support of AFRY
    July 9, 2021
    Les conséquences du changement climatique sont de plus en plus visibles au Maroc. Le schéma changeant des précipitations et de la sécheresse, l'augmentation des températures moyennes et des canicules, les inondations et l'augmentation du niveau de la mer affectent de plus en plus de nombreuses régions. Et pourtant, le taux d'émission de gaz à effet de serre (GES) du Maroc est relativement faible, comparé à celui d'autres pays. En 20162, les émissions totales de GES du Maroc ont atte ...
  • Authors
    Chami Abdelilah
    Derj Atar
    Hammi Ibtissem
    Morazzo Mariano
    Naciri Yassine
    with the technical support of AFRY
    June 28, 2021
    During the 2015 Paris Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC), governments pledged to limit the global temperature increase to well below 2°C above pre- industrial levels, to peak emissions as soon as possible, and to achieve carbon neutrality in the second half of the century. Yet, even assuming full implementation of the commitments made by governments in Paris, the global concentration of greenhouse-gas (GHG) emissions will ...
  • Authors
    Chami Abdelilah
    Derj Atar
    Hammi Ibtissem
    Morazzo Mariano
    Naciri Yassine
    with the technical support of AFRY
    June 28, 2021
    Lors de la Conférence des Parties à la Convention-cadre des Nations unies sur les changements climatiques (CCNUCC) qui s'est tenue à Paris en 2015, les gouvernements se sont engagés à limiter l'augmentation de la température mondiale à un niveau bien inférieur à 2°C par rapport aux niveaux préindustriels. Ils se sont également engagés à atteindre, dès que possible, un pic de leurs émissions et à parvenir à la neutralité carbone au cours de la seconde moitié du siècle. Pour autant, m ...
  • Authors
    April 27, 2021
    With a population of approximately 200 million, Nigeria accounts for about half of West Africa's population and has one of the largest concentrations of young people in the world. Endowed with abundant natural resources, Nigeria is one of Africa's largest oil exporters, with an estimated 37 billion barrels of proven crude oil reserves, the majority of which are found in the Niger River Delta and offshore in the Bight of Benin, the Gulf of Guinea and the Bight of Bonny. Nigeria also ...
  • April 12, 2021
    Water resources have become increasingly scarce in several regions of the world, particularly in arid and semi-arid zones. Countries located in these regions are constrained by water scarcity due to their hydro-climatic characteristics and intra- and interannual rainfall fluctuations. I...
  • March 31, 2021
    Depuis la découverte des ressources pétrolières du Nigeria en 1956, le secteur pétrolier a progressivement revêtu une importance considérable, jusqu'à devenir le principal moteur de l'économie du pays : le pétrole brut est le premier poste d'exportations (figure 1) ainsi que le principal pourvoyeur en réserves de devises et de recettes fiscales pour le gouvernement fédéral nigérian (figure 2). Cependant, malgré son importance, le secteur pétrolier n'a pas élargi la base productive d ...